Problem spotting in human-machine interaction
نویسندگان
چکیده
In human-human communication, dialogue participants are continuously sending and receiving signals on the status of the information being exchanged. We claim that if spoken dialogue systems were able to detect such cues and change their strategy accordingly, the interaction between user and system would improve. Therefore, the goals of the present study are as follows: (i) to find out which positive and negative cues people actually use in human-machine interaction in response to explicit and implicit verification questions and (ii) to see which (combinations of) cues have the best predictive potential for spotting the presence or absence of problems. It was found that subjects systematically use negative/marked cues (more words, marked word order, more repetitions and correc tions, less new information etc.) when there are communication problems. Using precision and recall matrices it was found that various combinations of cues are accurate problem spotters. This kind of information may turn out to be highly relevant for spoken dialogue systems, e.g., by providing quantitative criteria for changing the dialogue strategy or speech recognition engine.
منابع مشابه
Machine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction
Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...
متن کاملA Semi-automatic Groundtruthing Framework for Performance Evaluation of Symbol Recognition and Spotting Systems
In this paper, we are interested with the groundtruthing problem for performance evaluation of symbol recognition & spotting systems. We propose a complete framework based on user interaction scheme through a tactile device, exploiting image processing components to achieve groundtruthing of real-life documents in an semi-automatic way. It is based on a top-down matching algorithm, to make the ...
متن کاملA New Hybrid Meta-Heuristics Approach to Solve the Parallel Machine Scheduling Problem Considering Human Resiliency Engineering
This paper proposes a mixed integer programming model to solve a non-identical parallel machine (NIPM) scheduling with sequence-dependent set-up times and human resiliency engineering. The presented mathematical model is formulated to consider human factors including Learning, Teamwork and Awareness. Moreover, processing time of jobs are assumed to be non-deterministic and dependent to their st...
متن کاملMicro-Expression Spotting: A Benchmark
Micro-expressions are rapid and involuntary facial expressions, which indicate the suppressed or concealed emotions. Recently, the research on automatic micro-expression (ME) spotting obtains increasing attention. ME spotting is a crucial step prior to further ME analysis tasks. The spotting results can be used as important cues to assist many other human oriented tasks and thus have many poten...
متن کاملMAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL
Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999